

### **IPv6 Addressing Security and Privacy**







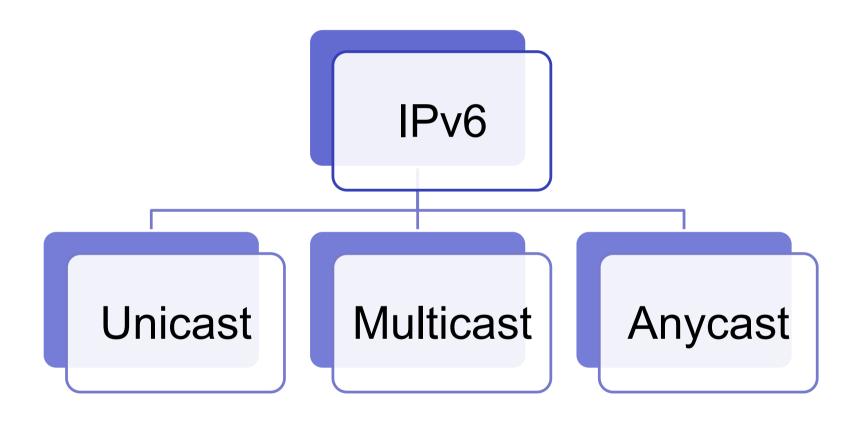
Piotr Wojciechowski (CCIE #25543) Senior Network Consultant Kraków, May 26, 2010

#### A little about me:)



- Currently working as Senior Network Consultant at ATM Systemy Informatyczne
- Contributing editor at LinuxPlus, Chip, Chip Special, currently at IT w Administracji (IT in Public Sector)
- Admin of CCIE.PL board




#### **Agenda**



- Address assignment in IPv6 overview
- Stateless Address Autoconfiguration (SLAAC)
- Duplicate Address Detection
- ICMPv6 Protocol Protection
- IPv6 Autoconfiguration Privacy Issues

### **IPv6** address types



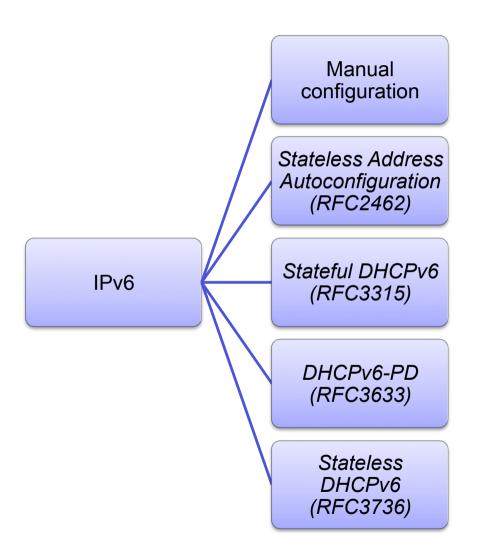


**ATM IT Systems Ltd** 

#### **Network Discovery Protocol**



- Operates at Link Layer
- Similar functions as ARP+ICMP Router Discovery+ICMP Router Redirect from IPv4
- Uses ICMPv6 protocol, where it defines five different packet types:
  - Router Solicitation
  - Router Advertisement
  - Neighbor Solicitation
  - Neighbor Advertisement
  - Redirect


#### ICMPv4 vs. ICMPv6



| ICMP Message Type                 | ICMPv4 | ICMPv6 |
|-----------------------------------|--------|--------|
| Connectivity Checks               | X      | X      |
| Informational and Error Massaging | X      | X      |
| Fragmentation Needed Notification | X      | X      |
| Address Assignment                |        | X      |
| Address Resolution                |        | X      |
| Multicast Group Management        |        | X      |
| Mobile IPv6 Support               |        | Χ      |

#### IPv6 address assignment

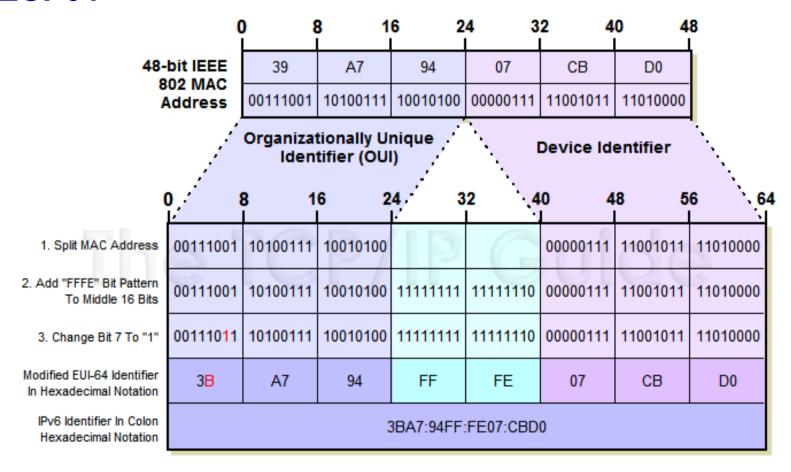




**ATM IT Systems Ltd** 

#### **Agenda**




- Address assignment in IPv6 overview
- Stateless Address Autoconfiguration (SLAAC)
- Duplicate Address Detection
- ICMPv6 Protocol Protection
- IPv6 Autoconfiguration Privacy Issues



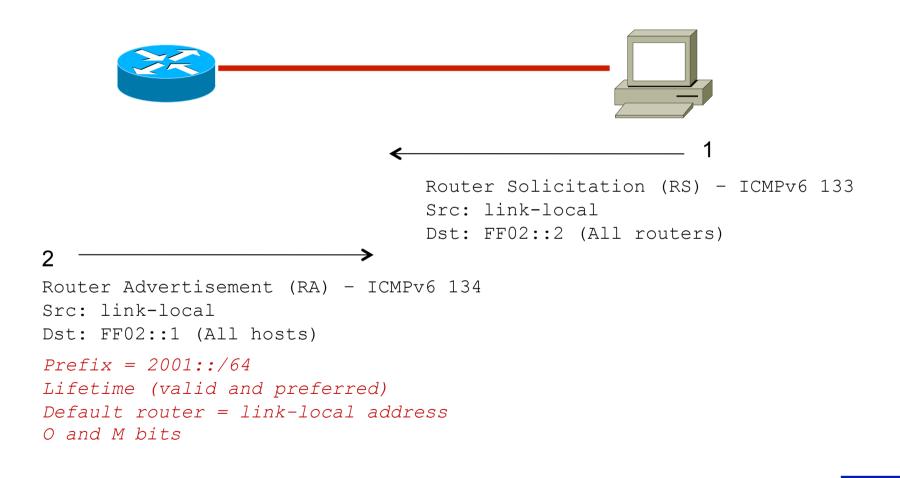
- Also known as SLAAC
- Easiest of the methods administrator don't have to do anything on end device, just simple configuration on router
- End device gets it's IPv6 address basing on MAC address of interface, which is converted into EUI-64 identifier
- End devices configure it's IPv6 address and set router's link-local address as their default gateway.

### IPv6 Address Assignment *EUI-64*





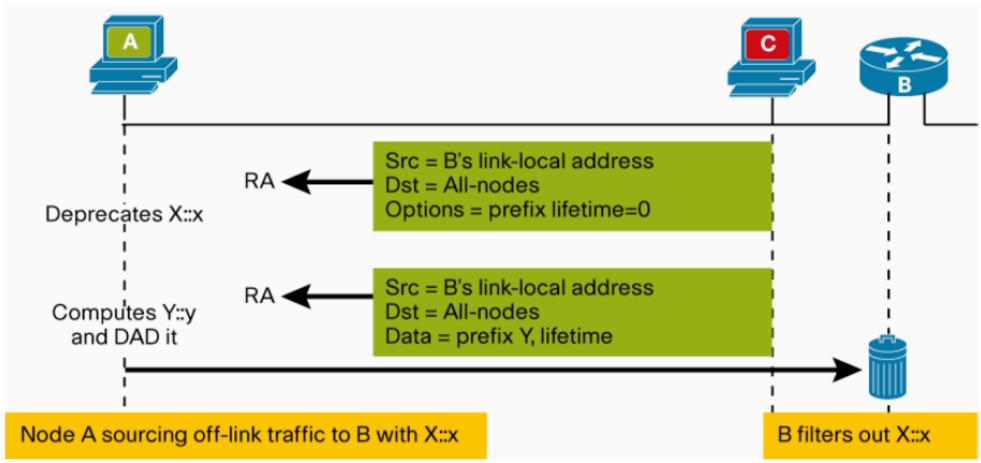
64-Bit IPv6 Modified EUI-64 Interface Identifier


Source: www.tcpipguide.com/free/diagrams/ipv6eui64.png

ATM IT Systems Ltd
www.atm-si.com.pl



- Router Advertisement contains:
  - Local prefix first 64-bits of IPv6 address
  - Router link-layer address
  - Lifetime
  - Priority
  - Additional flags M and O
  - MTU








- Why it's easy to perform attack against SLAAC:
  - Malicious user can send rogue RA due to no authentication built-in into protocol – easy way to perform DoS or Man-in-the-Middle attack
  - This can even not be an attack inexperienced administrator can misconfigure SLAAC on his host
- This can lead to Man-In-The-Middle attack





Source: IPv6 Secure Neighbor Discovery: Protecting Your IPv6 Layer 2 Access Network, Cisco.com



#### **Agenda**

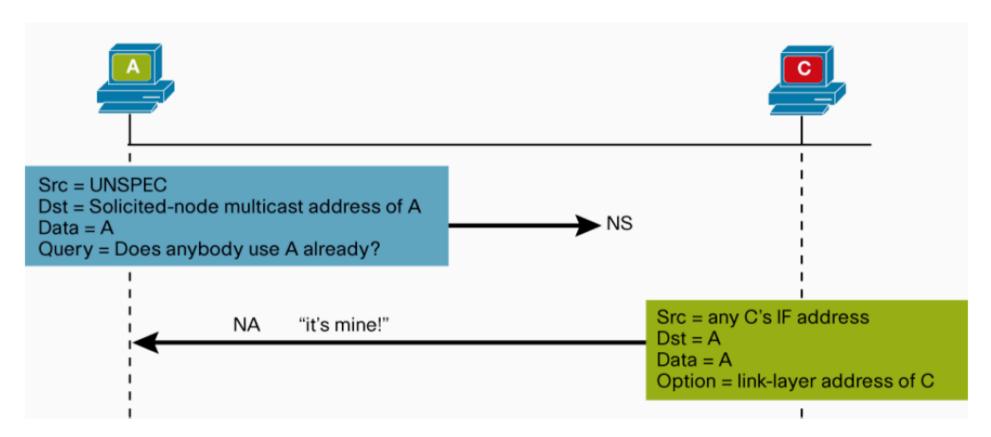


- Address assignment in IPv6 overview
- Stateless Address Autoconfiguration (SLAAC)
- Duplicate Address Detection
- ICMPv6 Protocol Protection
- IPv6 Autoconfiguration Privacy Issues

#### **Duplicate Address Detection (DAD)**



- With SLAAC host have to check if his IPv6 is not already used on the network segment by another node
- DAD is executed before host use IPv6 address including link-local address
- Neighbor Solicitation messages are used in normal operation host should never hear reply for sent query
- No authentication of messages is used


### Duplicate Address Detection (DAD) DoS attack scenario



- Attacker can reply to every NS query he receives and pretend to own all IPv6 addresses on the segment
- This will results in DoS attack no host can assign new IPv6 address anymore
- Hosts with addresses already assigned will loose them when their lifetime specified in RA message expire

### Duplicate Address Detection (DAD) DoS Attack Scenario



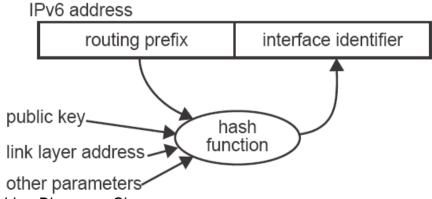


Source: IPv6 Secure Neighbor Discovery: Protecting Your IPv6 Layer 2 Access Network, Cisco.com

#### **Agenda**

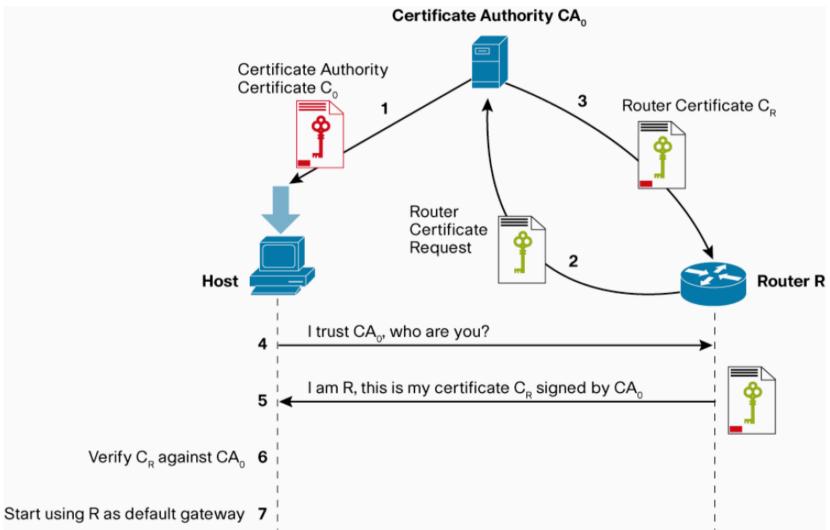


- Address assignment in IPv6 overview
- Stateless Address Autoconfiguration (SLAAC)
- Duplicate Address Detection
- ICMPv6 Protocol Protection
- IPv6 Autoconfiguration Privacy Issues


#### **ICMPv6 Protocol Protection**



- ICMPv6 have following security built-in mechanisms:
  - Source address must be link-local or unspecified (::/128) for RA and NS messages
  - Hop limit have to be set as 255
- This prevents before attacks being sent from other network segment
- There is no mechanism defined in ICMPv6 RFC's that would protect against local attacker




- Defined in 2005, three deployment models available
- ND message is extended by few options
- Pair of keys exists for every IPv6 node
- Host cannot create interface identifier portion of IPv6 address using EUI-64 algorithm
- Interface identifier is cryptographically generated basing on subnet prefix, public key and modifier using SHA-1 hash algorithm



Source: Implementing IPv6 Secure Neighbor Discovery, Cisco.com





Source: Implementing IPv6 Secure Neighbor Discovery, Cisco.com

**ATM IT Systems Ltd** 



crypto key generate rsa label SEND modulus 1024

ipv6 cga generate modifier rsakeypair SEND

interface GigabitEthernet0/0

ipv6 cga rsakeypair SEND

ipv6 address FE80::/64 cga

ipv6 address 2001:db8::/64 cga



- On IOS routers support for SEND is already available with release 12.4(24)T
- Linux support is available
- Microsoft XP and Vista will never support SEND
- Using SEND produced new security thread attacker can flood SEND-enabled host with ND packets forcing responder to process thousands of public key operations it's CPU consuming

# ICMPv6 Protocol Protection Detecting Rogue RA Messages



- IDS with customized signatures that checks if RA message source MAC or IPv6 does not match the configured one but we need that sensor on every network segment
- Deployment of public domain utility called NDPMon which analyzes all RA messages and checks their validity against an XML configuration file it's an IDS software

# ICMPv6 Protocol Protection Detecting Rogue RA Messages



Sending RA Messages with High priority – something that should be done by default!

interface GigabitEthernet0/0
ipv6 nd router-preference High

- Won't prevent planned attack but might help with nonmalicious misconfigured IPv6 hosts.
- Mechanisms to mitigate those kind of attacks should be implemented on switches – support from vendors is required.

# ICMPv6 Protocol Protection Responding on Rogue RA Messages

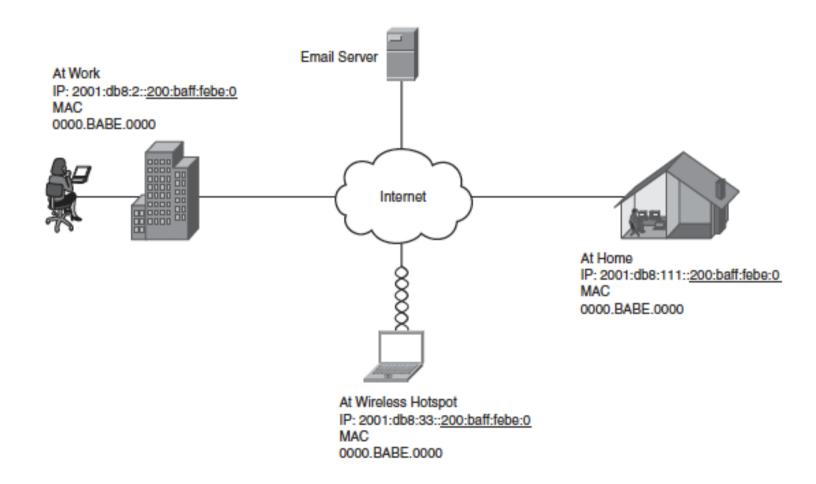


- Rafixd and ramond are open-source tools
- Daemon is listening on RA Messages. If rogue message is detected application sends immediately another rogue message but with lifetime of 0 seconds to clear rogue information on all nodes
- This won't prevent an attack, but may reduce it's lifetime.

### ICMPv6 Protocol Protection Switch Security



- Switches should implement set of security features similar to those known from IPv4:
  - IPv6 VLAN ACL could be used to drop all RA Messages sent with wrong source MAC address
  - IPv6 port ACL could be used to drop all RA Messages sent from a nontrusted port
  - IPV6 RA Guard RA can be sent only on trusted ports
  - DHCPv6 Snooping switch learns bindings between IPv6 and MAC addrtess
  - Dynamic NA Inspection once mapping between IPv6 and MAC is known switch inspects NA and drops those that contains forged information


#### **Agenda**



- Address assignment in IPv6 overview
- Stateless Address Autoconfiguration (SLAAC)
- Duplicate Address Detection
- ICMPv6 Protocol Protection
- IPv6 Autoconfiguration Privacy Issues

#### **IPv6 – Privacy Issue with EUI-64 Address**





Source: IPv6 Security, CiscoPress

**ATM IT Systems Ltd** 

#### IPv6 – Privacy Issue with EUI-64 Address



- Problem was described in 1999, in 2001 RFC 3041 "Privacy Extensions for Stateless Address Autoconfiguration in IPv6" has been released, updated by RFC 4941
- Solution to privacy problem generate host-related portion of IPv6 address using MD5 hash with random number on EUI-64 address
- Probability close to 0 with two same IPv6 addresses in segment, but even if, we still have DAD.
- Hosts periodically change addresses, but usually keeps previous one to not break existing communication

#### IPv6 – Privacy Issue with EUI-64 Address



- By default Cisco routers does not use privacy extensions why should they?
- Windows VP, Vista, 7 and several Linux distributions uses privacy extensions
- It can be disabled and many corporations actually do that they said they have to do forensic investigation and track down IPv6 address



### **QUESTIONS?**